The Formation and Deformation of Classic/Romantic Phrase Schemata: A Theoretical Model and Historical Study

Robert O. Gjerdingen

Eighteenth- and early nineteenth-century music is a grand edifice erected on a scaffolding of hierarchically organized conventions.¹ Those conventions employed at the highest levels of structure are among the most intensely studied schemata in all of music. I refer, of course, to sonata form, rondo form, the da-capo aria, and their several subspecies.² Likewise, the conventions that organize the lowest levels of structure are patent and well documented. They include not only rhythmic motives, melodic figures, and standard cadences, but also chord grammar and the rules of counterpoint.³ But what types of conventions give structure to the middle of this hierarchy? Some mid-level conventions organize relatively unstable and open-ended patterns such as sequences, linear melodic processes, and harmonic prolongations. Others define the highly closed, stable patterns of Classic themes, the antecedent-consequent phrase being the prime example. It is a theory of this latter type of convention that forms the topic of the following discussion.

What is a phrase schema? A student of the Classic phrase confronts a paradox: the more music one studies from this period, the more predictable and stereotypical seem its themes; yet the more closely one analyzes individual themes and phrases, the more idiosyncratic and original they appear to be. The paradox, of course, is not so much musical as psychological; it is the problem of how the mind correlates unique individual experiences with common classes of events and their contexts. Many psychologists believe that we create abstract mental representations of past experiences and then use these abstractions, termed schemata, to evaluate new experiences.⁴ Let us take a look at one possible diagram of a schema and then apply the concept of a schema to the Classic phrase.

Figure 1 shows a simple schema composed of two events, each of which consists of several component features.\(^5\) Such a schema might abstract the essentials of a cause-and-effect relationship, perhaps "child-touches-stove \(\rightarrow\) child-pulls-hand-away-and-cries." As an example of how musical features can combine to form musical events and then a musical schema, Figure 2 shows, in the same format as Figure 1, the skeleton of what Leonard Meyer has termed a Classic phrase "archetype" and Leonard Ratner a Classic "structural melody."\(^6\) The component features are scale degrees in the melody, scale degrees in the bass, chordal functions, and metric divisions. These in turn form the two schema events. Note that it is not the simple presence of particular features that forms either event, but rather the coordinated movement of features across a barline or other metric division.\(^7\) Example 1 shows this same Classic schema superimposed on a phrase from the trio of the third movement of Mozart’s Symphony in A Major, KV 114.

Networks. The example from Mozart’s trio is somewhat unusual in that the phrase and the schema behind it are nearly one and the same. A more common situation finds the two schema events, which are the syntactic kernels of this particular phrase type, embedded in various networks of other patterns. Examples 2 through 5 show a set of phrases that embed these two schema events in increasingly complex patterns of melodic

\(^7\)Musical schemata, schema events, and many of their component features are normative abstractions, not fixed lists of pitches. Just as the figure △ "looks like" a triangle, even though technically its lines form no angles, so do many musical phrases "sound like" a particular schema, even though technically some features of the schema might be missing. For a discussion of schematic norms and variation in music, see Robert O. Gjerdingen, *A Musical Schema: Structure and Style Change, 1720–1900* (Ph.D. dissertation, University of Pennsylvania, 1984), 131–80. For a more general discussion of how schemata can organize perception, see Jean Matter Mandler, *Stories, Scripts, and Scenes: Aspects of Schema Theory* (Hillsdale, N.J.: Lawrence Erlbaum Associates, 1984).
Example 1. Mozart, Symphony in A Major, KV 114, III, trio, mm. 9–12 (1771)

Example 2. Mozart, Symphony in F Major, KV 43, II, Andante, mm. 1–4 (1767)

thirds and triads. Though the two schema events occupy a smaller and smaller portion of each succeeding example, the basic schema nonetheless remains clearly perceptible.

This particular schema, which I label the 1–7 . . . 4–3 schema (after the two melodic dyads), is only one of several that employ two events of the type described above. Acquaintance with a number of similar two-event schemata makes possible the further schematic abstraction of a general “antecedent-consequent” structure. Other mid-level schemata have three or four events. Three-event schemata often display melodic progressions of the do-re-mi type while four-event schemata are frequently associated with harmonic progressions of the I–IV–V–I variety. In actual compositions, individual schemata from these different categories can freely overlap or be

8The melody of Example 2 (taken from the aria “Natus cadit,” no. 8 of Mozart’s Latin comedy Apollo et Hyacinthus) resides in the first violins, not the higher flute part.

9I use the term “antecedent-consequent” to mean grammatical entailment in a strict sense, not the vague and prevalent notion “x is nicely complemented by y.”
Example 3. Mozart, Keyboard Sonata in G Major, KV 283 (189h), I, Allegro, mm. 1–4 (early 1775)

Example 4. Mozart, Symphony in E♭ Major, KV 543, I, Allegro, mm. 26–33 (1788)

embedded one within another. For instance, the simple incipit in Example 6 from a symphony by Rosetti shows a 1–7 . . . 4–3 schema presented simultaneously with a slightly longer three-event schema. Each schema is completely regular and neither interferes with the other.

The simultaneous employment of multiple phrase schemata reached one of its highest levels of development in the late works of Haydn and Mozart. Characteristic of their many ingenious solutions to the problems inherent in this type of complex structuring was the use of orchestration to differentiate superimposed schemata. An obvious example of this procedure can be found at the beginning of Mozart’s last string quintet, as shown in Example 7. The special coloring, dynamics, and horn-like figures of the solo violas help to differentiate the initial three-event, do-re-mi schema from the two-event schema presented by the violins and ‘cello. Note that this two-event pattern is itself a composite of the 5–4 . . . 4–3 and 3–4 . . . 2–3 schemata, as indicated on the example. It is also worth emphasizing the fact that each schema alone is a self-sufficient, complete musical statement. If, for instance, one cuts out the two-event schema and pastes it back in a little later as a separate four-measure unit (see Example 8), the result remains grammatically correct, though, to paraphrase Leonard Meyer, there is a loss of relational richness.10

An important constraint that limits the ultimate number of schemata to which a listener need attend is provided by our short-term memory. Beyond six, seven, or eight seconds (much depends on the context) our immediate memory of a previous schema event fades rapidly.11 So if the appropriate next event in a schema does not appear within this time frame, we drop that schema as a probable structure. Historical evidence seems to corroborate this point unequivocally: taking the 1–7 . . . 4–3 schema as a case in point, the absolute time that elapses between the two schema events of any of the hundreds of examples known to me never exceeds this time limit. Given the complementary finding that only rarely do the time intervals between the events of Classic phrase schemata shrink to much less than one full second, it is evident that these schemata occupy a restricted time range within the scope of entire compositions and are thus limited to one or two levels in the overall structural hierarchy.

Underlying the analytical strategy presented here is the rejection of the hypothesis of hierarchical uniformity—the common presumption that because a complex system appears to be hierarchically structured, the same elements and relationships present on one structural level will be present on all levels.12 This hypothesis is fundamental to the Schenkerian method wherein low-level pitches are reduced to a smaller number of mid-level pitches, which are similarly reduced to a still smaller number of high-level pitches. The study of phrase schemata, however, suggests that Classic music is not hierarchically uniform. Pitches, rather than transforming into higher-level “super-pitches,” transform into lines, chords, schema events, and other structures that cannot be summarized as, or reduced to, a single pitch. Likewise, schema events transform into schemata, which again cannot be summarized as, or reduced to, a

Example 6. Rosetti, Symphony in E♭ Major, Murray E♭1, I, Allegro moderato, mm. 1–5 (1776)

Example 7. Mozart, String Quintet in E♭ Major, KV614, I, Allegro di molto, mm. 1–9 (1791)

Example 8. A recombination of the component schemata of Example 7
single pitch. At each new level new descriptions are needed to describe newly emergent phenomena.\(^{13}\)

Scripts and plans. The complex conventions that characterize phrase schemata are not Platonic forms that have always been in composers’ and listeners’ minds. Rather, they are specific patterns formed with artistic purpose, patterns that changing artistic purposes can transform. Over long periods of time the very nature of musical schemata can change in response to new tastes and attitudes. For instance, the structurally stereotyped and emotionally neutral formulae of the later eighteenth century gave way in the nineteenth century to phrase patterns that are structurally less specific but emotionally more directed. Borrowing terms from the cognitive scientists Schank and Abelson, I describe the stereotyped eighteenth-century patterns as definite “scripts” and the nineteenth-century patterns as generalized “plans.”\(^{14}\) A comparison of themes by Mozart, Haydn, and Rubinstein may illustrate this difference.

In Example 9, we have a simple eight-measure phrase written by Mozart in the mid-1770s. It opens with a \(1\)–\(7\) \(\ldots\) \(4\)–\(3\) schema of four measures and closes with a half cadence following the melody’s descent from its high point in the fifth measure. The melody in the fifth and sixth measures links the theme’s second half to its first half by continuing the ascending pattern implicit in the opening melody—step down, leap up, step down, leap up, etc.—while simultaneously beginning the descent to the cadence. Figure 3 summarizes this commonClassic structure as an initial thematic schema, an ascending process of some sort implied by this schema, and then a melodic descent in conjunction with a cadential schema.

\(^{13}\)The notion that new hierarchical levels often create new phenomena with new properties can be traced back to Hegel. Scientists discuss the same idea in *Hierarchy Theory: The Challenge of Complex Systems*, ed. Howard H. Pattee (New York: George Braziller, 1973).

The theme from the slow movement of Haydn’s Symphony No. 88, shown as Example 10, provides a case of this same eight-measure structure from the late 1780s. Haydn exploits the ascending melodic pattern to achieve an emotional intensification. He accomplishes this intensification by stretching the initial melodic motive one degree on each repetition—the sixth \(f \#\)’–\(d\)” is answered by the seventh \(a’\)–\(g”\) which is answered by the octave \(a’\)–\(a”\)—and by suspending and resolving the high \(a”\) in measures five and six, a simple yet effective touch that adds a special poignancy to this interim goal and turning point in the form.

The precise and predictable syntax of the two preceding examples was rejected by most composers after the first decades of the nineteenth century. Yet composers did retain and develop something of this structure’s general form and what might be termed its “emotional profile.” As an example of what was saved and what was lost, consider Example 11, a theme from the slow movement of Anton Rubinstein’s D-Minor Piano Concerto of 1864. As in the Haydn example there is an initial melodic motive stretched by one degree with each repetition, and its third statement coincides with the peak of the melody from which a descent is made to a cadence. However, the initial antecedent-consequent schema, so important
Example 9. Mozart, Overture to La finta giardiniera, KV 121 (207a), III, Allegro, mm. 21–24 (1774)

Example 10. Haydn, Symphony no. 88 in G Major, II, Andante, mm. 1–8 (1787)

Example 11. Anton Rubinstein, Piano Concerto no. 4 in D Minor, op. 70, II, Andante, mm. 21–32 (1864)
to the stereotyped script of Haydn’s and Mozart’s themes, was lost in the transformation into a general Romantic plan. What was predictable with some certainty in Classic scripts—harmonization, particular melodic scale degrees, overall length, patterns of conformant subphrases—becomes subject only to a loose Romantic plan of indeterminate execution. And what was a secondary feature of the Classic scripts, that is, melodic contour, becomes in the Romantic plan a principal means of structuring a phrase.

A schema across time. The change from Mozart’s theme to Haydn’s, and from Haydn’s to Rubinstein’s, might be described as movement from a basic form or prototype to an elaborated, more highly differentiated version, and then to a late stage where only certain features are still recognizable. Similar progressions seem to occur in the histories of most musical schemata. Whether the structure in question is sonata form or a phrase schema, we recognize periods of experimentation, consolidation, maturity, decline, and obsolescence. Previous generations of musical scholars have attributed these similar phases to a spiritual life cycle. They held that artistic forms shared periods of birth, growth, flowering, aging, and death because all living things shared these periods. Today such an explanation may seem less self-evident than before, yet this lifecycle model continues to be used for the apparent lack of a better alternative.

An alternative, however, does exist based on two fundamental hypotheses of a psychological, statistical nature. The first hypothesis asserts that the variation across time in the number of instances of a musical schema approximates a normal, bell-curved statistical distribution. That is, if a musical schema is objectively defined and an intensive historical search is made

Figure 4. Hypothetical normal distribution

for examples of this schema, then the complete record of the number of examples found will approximate the graph of Figure 4. Why should this be so? One line of reasoning takes as its point of departure the fact that a musical schema of any real complexity is not found in all historical periods; for example, the exact type of antecedent-consequent phrase schema discussed thus far is unusual outside of the eighteenth and early nineteenth centuries. For Monteverdi or Webern such a pattern is unthinkable, for Corelli or Bruckner unlikely, for Vivaldi or Chopin an occasional occurrence, and for Haydn or Mozart a commonplace. A bell-curved statistical distribution merely formalizes these sorts of generalizations.

Another line of reasoning leads directly to the second hypothesis, which, because of special terminology, requires a little introduction. In the 1960s William Labov conducted experiments designed to determine how people categorize simple, everyday objects, specifically cups, bowls, dishes, mugs, glasses, vases, and pitchers. Volunteers were shown cards on which were drawn pictures of these items and asked to identify them. The task was not as easy as it might seem because Labov

had prepared not only cards on which were drawn obvious cups, bowls, vases, etc., but also greatly broadened cups looking somewhat like bowls, greatly elongated cups looking somewhat like vases, and so forth. Indeed the cards contained an entire series of graduated topological transformations. Within a certain range of transformations people largely concurred as to what was a cup, a bowl, etc. But these categorizations had vague or “fuzzy” boundaries; an atypically broad cup might well be identified as a bowl or, if shallow enough, even a dish. The further a drawing deviated from the proportions of a typical cup the less likely people were to consider it a cup.

Numerous experiments such as the one just described have shown that people develop definable notions of what is typical for a certain category of objects or events. Given any single example of an object or event, we can readily judge how typical or atypical it is, forming what some psychologists term a typicality judgment. At one extreme, we recognize an example as being maximally typical—what we often term a “classic” or “perfect” example and what psychologists term a prototype. At the other extreme, the typicality of an example may be so low—it may share so few features with the prototype—that we question whether the example belongs in the particular category. In between these extremes we form intermediate typicality judgments that, in certain contexts, can be graphically represented by a bell-shaped curve of the kind already seen in Figure 4. The prototypical examples would be at the peak of the curve and the other possible typicality judgments would be distributed around this central tendency or norm.

With the concept of typicality now introduced it is possible to proceed to the second hypothesis, which is that a musical schema will exhibit a curve of typicality similar to its population curve. This means that at the time when a schema is most prevalent one finds its most typical examples; and conversely, at the margins of a schema’s historical period one finds its most atypical examples. From this hypothesis it follows that the range of variation across all instances of a schema will vary inversely with the schema’s population. In other words, at the peak of population the range of variation will be very small, while at the low points in population the range of variation will be great.

Rather than attempting an abstract defense of these initially puzzling hypotheses, let us instead examine a large historical survey of a single schema in order to adduce empirical evidence that these hypotheses are indeed reasonable. Figure 5 shows two superimposed graphs. The solid, angular line represents the number of examples of the 1–7 . . . 4–3 schema found in each five-year interval from 1720 to 1900. The smoothly curving line of dots and dashes represents a normal, bell-shaped statistical distribution. One need hardly be a statistician to see that the population of the 1–7 . . . 4–3 schema approximates a normal distribution. We have all become so inured to statistical sophistry, however, that our first reaction to a survey of this kind is probably to question whether it was representative, whether it was fair, whether it was properly controlled, and so

18A list of the three hundred or so phrases represented in this graph is available in Gjerdingen, *A Musical Schema*, 472–96. The universe of compositions from which these phrases were selected includes the so-called standard repertoire of concerted instrumental music, the complete symphonies of Haydn, Mozart, and other major masters, the standard collections and monuments of eighteenth-century symphonies, and hundreds of miscellaneous trio sonatas, overtures, arias, and concertos.

19The one apparent deviation is a slight asymmetry—there are more examples to the right of the population peak than to the left. I explain this asymmetry as an effect of the conservatism of schematic perception. That is, both the rise of new patterns and the decline of old ones are retarded by our use of past abstractions to interpret the present.
Figure 5.

Examples found per 5-year interval
forth. I could detail the scope of the thousands of phrases examined, or recount the attempts to disprove the correlation between the two graphs, or describe how increases in the size of the overall sample increased this correlation. But the most persuasive argument in favor of the results shown in Figure 5 may be that it corroborates the very stylistic knowledge that we ourselves have internalized. That is, were we given a 1–7 . . . 4–3 schema of the type illustrated thus far and asked to place it in history, Figure 5 would represent the probabilities of our responses—1775 would be a highly probable choice, 1740 or 1830 less probable, and 1720 or 1870 rather improbable.

The peak. To investigate the correlation of the population curve in Figure 5 with the concept of typicality it is necessary to select and compare examples from various locations on that curve. Looking at the time scale at the bottom of Figure 5, we see that the peak falls between 1770 and 1775. The model I have outlined predicts that at the peak of the curve there will be the prototypical examples of the schema and that the range of variation across all examples from that period will be slight. Of the examples already shown, those selected as being prototypes—Examples 1 and 9—also fall between 1770 and 1775. This indeed is the period of the “perfect” or “classic” examples of the schema. As an indication of how little variation may exist between phrases of this chronological period built on the schema, consider Example 12, the opening phrase from Vanhal’s Symphony in C Major (Bryan C9) in comparison with Mozart’s phrase of Example 1. These phrases share not only the same schema, but the same melody, bass line, form, harmony, meter, and key as well.

The slopes. Examples of the 1–7 . . . 4–3 schema from the slopes of the population curve have lower typicality than examples from the peak. In concrete terms this usually means that some other pattern is conflicting with, or complicating, the basic schema as represented by the prototypical examples. The interaction of the basic schema with such a pattern can be especially revealing of changes in musical style since on the ascending or early slope of the population curve the schema is still in a process of formation, while on the descending or late slope the schema is already in a process of deformation. Or put another way, on the ascending slope the component features and events of the schema are becoming more and more strongly associated in their particular arrangement, while on the descending slope these components are becoming disassociated from one another. Let us look first at the ascending slope.

The process of progressive association to which I have just referred can be amply demonstrated by the history of what I term the “high 2” melodic complex. Example 13 shows a simple form of what was one of the most common closing gestures in the Baroque—a dominant harmony supports a melodic leap from the second degree of the scale (the “high 2”) down to the fourth degree, followed by a resolution to the tonic triad with the third in the melody. The third and fourth measures of the
E♭-Minor Prelude from the first book of J. S. Bach’s *Well-Tempered Clavier* provide a florid example of this Baroque gesture (Example 14).

Example 14. Bach, *Das wohltemperirte Clavier* I, Prelude no. 8 in E♭ Minor, mm. 3–4 (1722?)

From the 1720s on, this closing gesture was increasingly associated with a preceding melodic movement from the tonic to the leading tone—the very type of movement that forms part of the first event in many later Classic phrase schemata. Indeed, this combination often suggests a latent 1–7 . . . 4–3 schema. But the particular manner in which the initial event was connected to the “high 2” gesture allowed for some very un-Classical ambiguity as to the appropriate contrapuntal and harmonic context. Examples 15 and 16 highlight two different interpretations of this type of compound, “high 2” melody as it was most often heard in the 1740s and ’50s. The first interpretation em-

Example 15

Example 16

...phasizes the similarity of the two melodic dyads 1–7 and 4–3; the second interpretation the linear progression 1–2–3. Example 17 shows how these two interpretations coexist in the same passage from a Sammartini symphony.

The Baroque delight in convoluted networks of low-level melodic patterns was not shared by many composers of Haydn’s generation. They pruned back the linear, processive aspect of the “high 2” melodic complex and sought ways of bringing out the parallelism of the two melodic dyads. One of Haydn’s earliest symphonies provides a good example of how this was accomplished. Example 18 shows how Haydn severed the direct melodic connection between the leading tone and the second degree, and prefaced the first schema event (1–7) with a descending melodic motive that the later “high 2” descent

Example 17. Sammartini, Symphony in G Major, Jenkins/Churgin no. 39, I, Allegro ma non tanto, mm. 4–5 (1740)

Example 19.

Historical development

![Historical development](image)

Apparent classical syntax

![Apparent classical syntax](image)

Example 20. Haydn, Symphony no. 35 in B♭ Major, I, Allegro di molto, mm. 17–20 (1767)

Example 21.

![Example 21](image)
Example 21. Mozart, Symphony in A Major, KV 114, IV, Allegro molto, mm. 82–88 (1771)

and the conformant subphrases. As Figure 6 illustrates, in the Classic arrangement the two schema events were associated with the ends of conformant subphrases, or, as is frequent with Haydn, with the midpoints or even the beginnings. Composers working in the more continuous, processive style prevalent by the turn of the nineteenth century found ways to connect the second subphrase to the first schema event, and to link what follows the phrase to the second schema event, as illustrated in Figure 7.

Two examples by Beethoven show how changes in this direction were incremental. In the first, Example 22, we can see how, by prefacing an ordinary four-measure schema with an arpeggiated tonic triad, Beethoven gives a hint of a new formal plan. Though the difference between this phrase and those previously discussed is slight, its significance is that the dominant chord in measure three and the tonic chord in measure five are now potentially beginnings of formal units rather than certain endings, an implication that Beethoven develops in the course of the movement. A further stage of disassociation is evident in the slow movement of the Emperor Concerto, Example 23. Here Beethoven abandons the traditional paired dyads in the bass and aligns the bass instead with the new formal plan; what
Example 22. Beethoven, Piano Sonata in D Minor, “Tempest,” op. 31, no. 2, II, Adagio, mm. 1–5 (1802)

Example 23. Beethoven, Piano Concerto no. 5 in Eb Major, “Emperor,” op. 73, II, Adagio un poco mosso, mm. 16–19 (1809)

was before clearly a harmonic plan of I–V and V–I is now the less binary I–V–I. This type of ongoing form where every closing articulation is at the same time a new beginning was perfect for a young composer like Mendelssohn. The Scherzo of his Octet provides Example 24, where even a moment’s rest would be out of the question.

The margins. At the beginning of the eighteenth or near the end of the nineteenth century the population of this particular schema approaches zero and, as expected, we find phrases that are at the margins of typicality. In certain very early examples we may recognize only the potential for the later schema and in certain very late examples we may detect only its echo. For an early example, consider the passage from Bach’s F♯-Major Prelude, WTC Book I, quoted in Example 25. In the middle of m. 22 one might construe the initial event of a 1–7 . . . 4–3 schema. But in the middle of m. 23, where the harmony moves back from the dominant to the tonic, the requisite 4–3 melodic dyad is missing. Instead, Bach continues the subtle play of the small melodic motives against the bass and delays real closure until the middle of m. 24. What makes this passage especially interesting is that for Kirnberger, one of Bach’s students, the potential 1–7 . . . 4–3 schema seems to have been recognizable; the “missing” 4–3 melodic dyad somehow found its way into Kirnberger’s manuscript of the Prelude, as can be seen in
Example 24. Mendelssohn, Octet, III, Scherzo, mm. 1–8 (1825)

Example 25. Bach, *Das wohltemperirte Clavier* I, Prelude no. 13 in F♯ Major, mm. 21–24 (1722)
Example 26. This variant was unquestioned during the eighteenth and early nineteenth centuries and failed to seem like an improvement only later in the nineteenth century when the 1–7 . . . 4–3 schema itself was disappearing.20

For late examples of this schema we turn first to Schumann and then to Brahms. Example 27 presents a phrase from Schumann’s song “Wehmut,” number nine in the Liederkreis of 1840. In this phrase, Schumann overlays upon the Classic script of the 1–7 . . . 4–3 schema the Romantic plan of what Meyer has called the “gap-fill” archetype.21 That is, an initial melodic leap (here G natural to E) creates a psychological gap that a following linear descent fills in. In Schumann’s phrase the Classic script and the Romantic plan are more or less in balance, and even the closing harmonic deflection toward what at first appears to be the relative minor does not efface the basic schema.22 With Brahms, however, the scales are tipped in favor of the Romantic plan. Though the phrase from his late B-Minor Intermezzo shown in Example 28 begins with the same leap and initial schema event as in the Schumann, he stretches the rest of the form to the breaking point. The metric predictability of the Classic script is rejected and we must simply wait until the melodic F# finally drops into place.

Summary and conclusions. The examples presented in this discussion constitute only a small fraction of the hundreds of phrases that could be cited in support of the hypotheses of musical schema theory as I have outlined them. Though the terminology and some of the concepts may be unfamiliar, the basic ideas behind these hypotheses are, I believe, intuitively evident and sound. These are as follows: that Classic composers worked with a repertory of conventional phrase types and did not reinvent the musical phrase each time they took pen to hand; that many of these schemata are simplifications and recombinations of earlier Baroque musical gestures; that in terms of conventional phrase schemata, the 1770s and ’80s are not just traditionally but psychologically the period of the classic phrase; that composers and listeners can distinguish typical from atypical examples of conventional schemata; that the very nature of musical schemata changed in the transition from the stereotyped scripts of the eighteenth century to the generalized plans of the later nineteenth century; that the musical structures of the eighteenth and early nineteenth centuries are hierarchically organized; and that the varying time characteristics of human memory—immediate memory, short-term memory, long-term memory—require that musical structures of different time dimensions be described in different ways. When formalized in terms of a theory of mid-level musical schemata, these ideas can support at least a tentative explanation of how composers and listeners detected, abstracted, and exploited relatively stable musical-structural conventions in an environment of constant stylistic and cultural change.

I have left out much in describing in detail only one phrase schema. There are perhaps a dozen basic types of antecedent-

20The departure from Bach’s autograph was corrected by the editors of the Bach-Gesellschaft (the WTC appeared in 1864). Kirnberger’s variant was not, however, completely expunged. It lives on in Carl Czerny’s widely sold edition.

Example 27. Schumann, *Liederkreis*, op. 39, no. 9, “Wehmut,” Sehr langsam, mm. 14–16 (1840)

Example 28. Brahms, Intermezzo, op. 119, no. 1, Adagio, mm. 24–30 (1893)

consequent schemata and a far greater number of other types. The interconnections among the numerous components of these structures form a network of incredible complexity and richness. Some schemata share initial events, others share terminal events. Some schemata share common melodic scale degrees but have very different forms; others share a common form but have very different pitch structures. And when one begins to take into consideration the traditional pattern networks into which these schemata are embedded, the many conventions for linking and overlapping schemata, and the ways in which composers played with the expectations of convention, a real appreciation forms for the sophistication and flexibility of the overall system of mid-level, Classic structures. In the hands of the lowliest kapellmeister this system provided a ready syntax for the replication of convention; in the hands of Mozart it amazes us yet today.