
In the 1930s, Paul Hindemith declared it “an astounding fact that instruction in composition has never developed a theory of melody [Melodielehre]” (Unterweisung im Tonsatz [Mainz: Schott, 1937]: 199). This lack of a theory, even more astounding today, largely explains melody’s absence from the music curriculum and its peculiar status in musicological discourse. At best, melody receives insightful critical aperçus. At worst, the institutionalized tropes of harmony and voice leading dispossess melody of its real significance.

In The Analysis and Cognition of Basic Melodic Structures, Eugene Narmour now places before us a full-fledged Melodielehre—a major statement about how melody is perceived and how it thus ought to be analyzed. At first glance, the book seems positively mainstream. The hundreds of musical examples that enliven its pages speak to conservative, canonical musical tastes: Bach, Beethoven, Brahms, Mozart, Chopin, Schumann. And anyone acquainted with professional music theory will recognize the graphic accoutrements of twentieth-century analysis: vertical lines highlighting “structural tones” and horizontal lines grouping these tones together into “archetypes.” The theory of melodic perception that supports this familiar post-and-lintel apparatus criticus will not, however, be what many readers expect. Indeed, on closer inspection the book takes on a radical, deconstructivist cast.

For Hindemith and others in the received tradition of melodic analysis, tones were the indivisible units of melody. The “laws of melody” acted to constrain the careening of willful tones through musical space much as the bumpers and flippers of an arcade game enforce a “style” on the trajectories of rolling steel balls. For Narmour, by contrast, tones are no more than tokens for bundles of individually perceived musical features or “parameters.” He replaces the old melodic laws and Tonwillen with the complex interactions of two separate systems in the brain. The first—the innate, “bottom-up” system—is an assemblage of elementary processing modules. Each module reacts automatically to some aspect of a single musical parameter. For example, one module responds exclusively to whether the size of the current melodic interval is similar to that of the previous interval. Another responds only to whether the current melodic direction (up, down, or lateral) is similar to the previous direction. The second system—“top-down”—is the totality of a listener’s musical memories, particularly the learned expectations gleaned from a lifetime of musical experiences. A “melody,” something once conceptualized as a simple series of tones, now becomes the interpretations that individuals give to their internal dialogues between innate responses and learned expectations. And melodic analysis, no longer a divination of the one true structure, becomes an interpretation of interpretations.

The foundations of Narmour’s theory of melody were laid by Leonard Meyer, to whom the book is dedicated. One recognizes Meyer’s concern for the listener’s moment-by-moment evaluation of the future implications of present musical events, Meyer’s application of general Gestalt laws of perception to specific melodic patterns, and Meyer’s central thesis of the psychological theory of emotion—the principle “that emotion or affect is aroused when a tendency to respond is arrested or inhibited” (Emotion and Meaning in Music [Chicago: University of Chicago Press, 1956]: 14). Like Meyer, Narmour chooses “closure” as the measure of melodic structuring. Thus a tone is deemed structural or nonstructural to the extent that it realizes (closure) or fails to realize (nonclosure) the many implications generated by preceding tones.

The superstructure of Narmour’s theory is quite original. He takes the Gestalt principle
of implication governed by similarity and posits a symmetrical concept of implication governed by differentiation. An ascending chromatic scale defines a model instance of the first type of implication. Each new tone is implied to occur in a similar direction (up) and at a similar distance (one semitone) from the preceding tone. By contrast, a large ascending leap exemplifies the second type. In Narmour’s theory, the tone following a large leap is implied to occur in a different direction (down) at a different distance (small interval rather than large). The dualism of similarity and differentiation has roots in Meyer’s concepts of process and reversal. But the degree to which Narmour abstracts these concepts and applies them to all parameters clearly sets his book apart.

Many previous proposals for music analysis have advocated a “parametric” or feature-by-feature approach. But the rigor with which Narmour carries out his project, and the complexities that arise in the process, bring to the fore methodological problems that drew less attention to themselves in earlier studies. Paramount among them is the Humpty Dumpty problem. That is, our ability to break a melody into its component parameters far exceeds our ability to put those pieces back together again. How does one interpret a musical moment that is partly closed in duration, partly open in melodic interval, strongly closed in metrical placement, but strongly open in harmony? Does the structural significance of the event as a whole emerge from a simple inspection of its dissecta membra? Narmour provides thoughtful rules of thumb to help in the evaluation of multiple parameters. But a general solution to this problem (if one exists outside the brain itself) will likely require a computer model of considerable sophistication.

Unlike the one-thing-at-a-time, serial processing of information done on personal computers, the everything-all-at-once, parallel processing of information in the brain does not lend itself to succinct verbal description. Perhaps because narrative is itself a serial mode of communication, the prose description of this parallel system of melodic cognition lacks obvious starting or stopping points. Narmour intended The Analysis and Cognition of Basic Melodic Structures to be published simultaneously with The Analysis and Cognition of Melodic Complexity (in press), either as one large volume or as a two-volume set. The practical considerations of the publisher weighed against such a plan, but the reader of the first volume will come to recognize its merits. Narmour’s care in selecting melodic examples that present a restricted and clear set of structures masks the manifest complexity that readers will likely encounter when attempting to apply his theory to melodies of their own choosing. The second volume provides the systematic guidance in the evaluation of combined, enchained, and networked melodic structures that, for reasons of space, could not be included in the first volume.

Narmour emphasizes the point that his hypotheses are “inherently defeasible so as to encourage revision and correction” (p. 425). To that end he suggests twenty-one experiments well suited to test the claims of his theory. Some of this activity has already begun, with a dissertation in progress at the University of Wisconsin at Madison by Deron L. McGee, and a series of psychological experiments underway at Cornell University (see Carol L. Krumhansl and E. Glenn Schellenberg, “Testing the Implication-Realization Model Cross-Culturally,” Cross-Cultural Perspectives on Music Perception: Symposium Conducted at the Meeting of the American Psychological Society, Washington, D.C., June 1991 [forthcoming]). Whether Narmour’s theory of melody is proven correct in every particular, or whether it serves as the stimulus for improved theories, it sets the agenda for what promises to be an exciting reappraisal of melody.

ROBERT O. GJERDINGEN State University of New York at Stony Brook